Computing Flowpipe of Nonlinear Hybrid Systems with Numerical Methods

نویسندگان

  • Olivier Bouissou
  • Alexandre Chapoutot
  • Samuel Mimram
چکیده

Modern control-command systems often include controllers that perform nonlinear computations to control a physical system, which can typically be described by an hybrid automaton containing highdimensional systems of nonlinear differential equations. To prove safety of such systems, one must compute all the reachable sets from a given initial position, which might be uncertain (its value is not precisely known). On linear hybrid systems, efficient and precise techniques exist, but they fail to handle nonlinear flows or jump conditions. In this article, we present a new tool name HySon which computes the flowpipes of both linear and nonlinear hybrid systems using guaranteed generalization of classical efficient numerical simulation methods, including with variable integration step-size. In particular, we present an algorithm for detecting discrete events based on guaranteed interpolation polynomials that turns out to be both precise and efficient. Illustrations of the techniques developed in this article are given on representative examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CSP Versus a Zonotope-Based Method for Solving Guard Set Intersection in Nonlinear Hybrid Reachability

Computing the reachable set of hybrid dynamical systems in a reliable and verified way is an important step when addressing verification or synthesis tasks. This issue is still challenging for uncertain nonlinear hybrid dynamical systems. We show in this paper how to combine a method for computing continuous transitions via interval Taylor methods and a method for computing the geometrical inte...

متن کامل

Flow*: An Analyzer for Non-linear Hybrid Systems

The tool FLOW* performs Taylor model-based flowpipe construction for non-linear (polynomial) hybrid systems. FLOW* combines well-known Taylor model arithmetic techniques for guaranteed approximations of the continuous dynamics in each mode with a combination of approaches for handling mode invariants and discrete transitions. FLOW* supports a wide variety of optimizations including adaptive ste...

متن کامل

Numerical solution of nonlinear integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions

In this paper, we use a combination of Legendre and Block-Pulse functionson the interval [0; 1] to solve the nonlinear integral equation of the second kind.The nonlinear part of the integral equation is approximated by Hybrid Legen-dre Block-Pulse functions, and the nonlinear integral equation is reduced to asystem of nonlinear equations. We give some numerical examples. To showapplicability of...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1306.2305  شماره 

صفحات  -

تاریخ انتشار 2013